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Abstract We propose a mathematical derivation of Brinkman’s force for a cloud of parti-
cles immersed in an incompressible viscous fluid. Specifically, we consider the Stokes or
steady Navier-Stokes equations in a bounded domain € C R? for the velocity field u of an
incompressible fluid with kinematic viscosity v and density 1. Brinkman’s force consists of
a source term 6 vj where j is the current density of the particles, and of a friction term
6mvpu where p is the number density of particles. These additional terms in the motion
equation for the fluid are obtained from the Stokes or steady Navier-Stokes equations set
in Q minus the disjoint union of N balls of radius ¢ = 1/N in the large N limit with no-
slip boundary condition. The number density p and current density j are obtained from the
limiting phase space empirical measure % > 1<k<n Sxp.u» Where x; is the center of the k-th
ball and vy its instantaneous velocity. This can be seen as a generalization of Allaire’s result
in [Arch. Ration. Mech. Anal. 113:209-259, 1991] who considered the case of periodically
distributed xxs with vy = 0, and our proof is based on slightly simpler though similar ho-
mogenization arguments. Similar equations are used for describing the fluid phase in various
models for sprays.
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1 Introduction

The subject matter of this paper is the derivation of macroscopic models for the dynamics
of large systems of solid particles or liquid droplets immersed in a viscous fluid (liquid or
gas). Specifically, we are concerned with the collective effect of the friction force exerted on
each particle as a result of the viscosity of the fluid together with a no-slip condition at the
surface of each particle. This type of fluid/solid interaction is relevant in several different
physical contexts.

A first example is provided by the sedimentation of solid particles in a viscous incom-
pressible fluid (say, a liquid), typically under the effect of gravity. There is a huge literature
on this subject; we shall only mention a few, such as [3, 5, §, 15, 16].

Another example is the case of sprays. Sprays are complex flows which consist of a
dispersed phase immersed in some viscous fluid.

Sprays can be described (cf. [4, 9, 14]) by systems of coupled macroscopic equations
(Eulerian-Eulerian modeling) or by the coupling of a macroscopic equation and a kinetic
equation (Eulerian-Lagrangian modeling).

We do not claim that the results in this paper provide a complete derivation of any of
these models for sprays, in particular because we do not analyze the coupling between the
particle and the fluid dynamics. Also, our results apply to steady regimes only, for reasons
that will be discussed below.

The present work is only aimed at providing a rigorous derivation of the Brinkman force
created by a cloud of like spherical particles—we recall that this force results from the
collective effect of the drag exerted on the particles by the surrounding fluid. In models for
sprays, this Brinkman force would typically be responsible for the coupling between the
motion of the fluid and that of the dispersed phase.

Our approach of this problem is the homogenization method: we more or less follow
earlier works such as [1, 7] which only considered periodic distributions of particles. More
precisely, the reference [7] established the friction term for the Laplace equation in a period-
ically perforated domain with homogeneous Dirichlet boundary condition. The case of the
Stokes or Navier-Stokes equations was treated in [1] by similar arguments.

The discussion in the present paper differs from [1] in two ways. To begin with, only
periodic distributions of particles all of which have the same velocity (which, by Galilean
invariance can be taken as 0) are considered in [1]. In the present paper, we consider clouds
of particles whose phase space empirical measure converges to some smooth phase space
density. Thus, as long as this (mild) assumption is verified, the particles considered here can
each have their own instantaneous velocity. Another difference with [1] lies in the method
of proof, which may lead to simplifications here and there. The reference [1] closely fol-
lowed the argument in [7] by truncating the velocity field in the vicinity of each particle,
an operation that has the disadvantage of leading to velocity fields that fail to satisfy the
incompressibility condition. In the present work, the same goal is achieved by removing
to the velocity field some carefully constructed solenoidal boundary layers so that the re-
sulting vector field still satisfies the incompressibility condition. Hence the pressure can be
integrated out, thereby leading to somewhat easier computations and avoiding painful es-
timates. Yet, our analysis borrows a lot from [1, 7], especially in the construction of these
boundary layers.
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The Mean-Field Limit for Solid Particles in a Navier-Stokes Flow 943

We also wish to mention the earlier paper [13], where an analogous problem is considered
for the Navier-Stokes equations. Unfortunately, this paper (as well as the references therein)
does not contain any indication about the convergence proof.

We found it convenient to describe the cloud of particles through its empirical measure
instead of using (marginals of) its N-particle distribution function, as in [3, 5, 6, 8, 16]—as
a matter of fact, most of these references assume nearly factorized N-particle functions, so
that both viewpoints are essentially equivalent.

2 Presentation of the Model and Main Results
2.1 Formal Derivation of the Model

Consider a system of N identical rigid spheres in a viscous incompressible fluid with kine-
matic viscosity v and density p ;. For simplicity, we assume that the dynamics of the spheres
is given, and we seek the collective effect on the fluid of the drag force on each sphere. We
shall make the two following scaling assumptions:

(a) the speed of the spheres is assumed to be small enough, so that the quasi-static approx-
imation holds for the fluid motion, and

(b) the collective effect of the drag forces exerted on each sphere is of the same order of
magnitude as the external force field driving the fluid.

First, we outline the quasi-static approximation (a). Our starting point is the set of Navier-
Stokes equations

ou+u-Viu+Vip=vA,u+f, Vy-u=0, 0

u(t, Mo, = Xk (@),

where u = u(t, x) € R? and p = p(¢, x) are respectively the velocity and pressure field in
the fluid, while r is the radius of the rigid balls immersed in the fluid and x; (¢) is the position
at time ¢ of the center of the k-th ball By, () .. The density of external force per unit of mass
in the fluid is f = (¢, x) e R3.

Notice that, in this model, the effect of solid rotation for each particle is neglected—
together with the amount of torque particles subject to such solid rotations would exert on
the fluid.

Assume that the motion of the spheres occurs at a time scale that is long compared to the
typical time scale of the external force field f. In other words, we postulate the existence of
a small parameter 7 < 1 such that

xi(t) = Xi (7).

The quasi-static approximation is obtained as follows: defining the slow time variable 7 =
vt and u(t, x) = tU(tt, x), the left-hand side of the Navier-Stokes equation is rescaled as

du—+u-Viu—vA,u=1*@;U+U-V,U)—1v A, U.
Defining

dXy

T T
rF(T,x):f(—,x), rP(T,x):p(—,x), and V= ——
T T dT
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944 L. Desvillettes et al.

we recast the Navier-Stokes problem above

2@ U+U-VU)+TtViP=1twAU+F), V.- -U=0,

2)
U(T asy, iy, = Ve(T).
Neglecting all terms of order O (z?) in (2), we arrive at the quasi-static Stokes problem
—vAU+V,P=F, V.-U=0,
3)

U(T, asy, ), = Vi(T).

Notice that, in the Stokes problem above, T is only a parameter, so that X, (7") and V,(T)
can be regarded as independent. In other words, in the Stokes problem considered below,
it will be legitimate, under the quasi-static approximation, to consider X; as a constant and
yet to allow V; # 0.

This accounts for item (a) above in the derivation of our model; let us now discuss
item (b), namely the collective effect of the drag force exerted on the spheres.

We recall that the drag force exerted on a single sphere of radius » immersed in a Stokes
fluid with kinematic viscosity v, density p is given by

6prvrV 4

where V is the relative velocity of the sphere—relatively to the speed of the fluid at infinity:
see [12, Sect. 20].

Hence the collective force field exerted on the fluid by a system of N identical such
spheres with prescribed dynamics is of the order of

6o vNr(V),

where (V) is the average relative velocity of the spheres.

In the sequel, we assume that the parameters v and p are of order O(1), as well as (V),
but we are interested in situations where r < 1 (small spheres) and N > 1 (large number of
spheres). In order for the collective effect of the immersed spheres to be of the same order
as that of the driving external force field, we postulate (without loss of generality) that

Nr >~ Const. > 0. %)

This scaling assumption leads to the mean field approximation listed above as (b).

A final remark on this model is in order: assuming that the particles are identical spheres
may seem somewhat academic. As a matter of fact, one has essentially no information on
the shape of the particles in most sprays or suspension flows—the only information available
being on their volume fraction. Therefore, the best one can do is to model the solid phase
in such a flow by a system of spheres of equivalent volume fraction. Consider for instance
the case of particles that are ellipsoids instead of spheres. Intuitively, this would affect the
mean field limit only if all—or at least most of—the ellipsoids would be oriented in the
same way. Such an assumption would lead to an anisotropic collective drag force; it is how-
ever most unrealistic in the context of suspension flows. In the numerical codes for sprays
such as Kiva, which are used to simulate the combustion of droplets of oil, the deformation
of the droplets (their eccentricity and its oscillations) is sometimes modeled (cf. [2]). One
can also surmise that, in the case of nonspherical particles, the torque exerted by the fluid
on each particle could become more significant than for spherical particles. In the present
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The Mean-Field Limit for Solid Particles in a Navier-Stokes Flow 945

paper, this torque effect is neglected, but we hope to address this question in a forthcoming
publication.

2.2 The Quasi-static, Mean Field Limit

Henceforth we use the sphere radius as the small parameter governing all limits of interest
here, and denote it by & > 0 instead of r. Thus we assume that N — oo, ¢ — 0 and

Ne=1. (6)

We further assume that the fluid and the particles considered here are enclosed in a domain
2 and denote the volume that is left free for fluid motion by

Q. =Q\ | JBy.e.
In this setting, the Stokes problem for the velocity field u, and the pressure field p, reads

—Au,+Vp, =g,
{ P & on 2. (@)

V-u, =0,
Here, the source term g is the ratio of density of external force per unit of mass to the

kinematic viscosity. This system is supplemented with a no-slip boundary conditions for u
on the boundary of €2,:

ul; =, fork=1,...,N,
{ o8, . = Vk ®
ulpe =0,
where vy is the instantaneous velocity of the (center of mass of the) k-th sphere.
Denote by
1N
Fy,v) =53 8 (6, 0) ©)
k=1
the phase space empirical measure of the system of N spheres and by
pn(x) = /3 Fy(x,v)dv; Jn(x) =/3 Fy(x,v)vdv (10)
R R

its two first moments.
It will be convenient to consider the natural extension of u, to 2 defined by

ﬁgoc):{"S(X) g, (a1
Uk ifxeBy,, k=1,...,N.

As recalled above, the Stokes’ computation of the friction exerted on an immersed sphere
by the surrounding viscous incompressible fluid involves the relative velocity of the sphere
to the speed of the fluid at infinity. In order to extend Stokes’ analysis to the mean field situ-
ation considered here, we need to assume that the distance between the immersed particles
is large enough compared to their size. Specifically, we assume that

inf |xy — x| >2r, where rp :=¢!/3. (12)
1<k#lI<N
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This assumption on the distance between particles is consistent with the critical scale for
the total number of particles discussed in [10]. The assumption (12) allows considering each
particle subject to a drag force given by Stokes’ formula independently of other particles. In
other words, under this assumption, the collective friction force is the sum of all the friction
forces created by each particle as if all the other particles were “at infinity”, a situation where
these friction forces are given by formula (4). Without this assumption, the flow around any
given particle could be perturbed by the presence of neighboring particles, thereby leading
to a different collective friction term. (For instance, we do not know the drag force exerted
by a viscous incompressible fluid in slow motion on a system of two identical spherical
particles at rest.)

Obviously, we cannot guarantee that our assumption (12) is preserved under particle
motion, and this is why only steady situations are considered here.

Likewise, we assume for simplicity that the fluid and the particles occupy a smooth
bounded domain € C R?, and that there is no direct interaction between the boundary of
2 and any of the immersed particles:

inf dist(xg, 02) > r. (13)
1<k<N

Theorem 1 Let Q C R3 be a smooth bounded domain, and consider a system of N balls
By e fork=1,...,N and ¢ = 1/N included in Q and satisfying conditions (12)—(13).
Assume that the empirical measure Fy has uniformly bounded kinetic energy

1
sup// —|v|2FN(x, v)dxdv < 00
v=1J Jaxws 2

while the macroscopic density and the current converge weakly in the sense of measures
PN — P, jN—J as N — o0

with p and j continuous on Q.
For each g € (L*())3, let u, be the unique weak solution in (H'(2,))> of (7), (8), and
define @i, as in (11). Then, i, converges in (L*(2))? to the solution U of

—AU+VIl=g+6n(j—pU),
V.U=0, (14)
Ulso =0.

As a matter of fact, the same techniques as in the proof of Theorem 1 allow considering
the steady Navier-Stokes, instead of Stokes equations. The starting point in this case is
U, Vg —vAu,+Vp, =g,
3 & & Pe 8 on Qs . (1 5)
V-u,=0,
In writing the system above, we have retained the kinematic viscosity v instead of absorbing
it in the source term as in the linear, Stokes case. Hence, unlike in (7), g is the density of

external force per unit of mass (instead of its ratio to the kinematic viscosity).
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The limiting equations in this case are

U-VU—-vAU+VII=g+6nv(j — pU),
V.U =0, (16)
Ulasa = 0.

Let us briefly discuss the uniqueness problem for (16). By a standard energy argument,
one finds that, if U; and U, are weak solutions of (16), they must satisfy

670 [ pIUL = Udr + 0190 = Ul
Q
< VU U1 = Us gy + 10l IV (UL = U2y U — Vsl

L4(Q)

We first recall (see [11, p. 9]) that

Ul sy < HIUell 2@ IV Ul

3 .
L4 (Q) L2(Q)’

together with the Poincaré inequality, this entails

1U: 34y < 4CRIVUI}2 (17)

(€2)
where Cp denotes the Poincaré constant in the domain €2. Hence
1/2
VIV = UD)l2q) < 2CH7(1V Uil + VU2l 2@) IV (U1 = U2 -
Therefore, uniqueness holds for (16) if
v 220 (VU2 + IV U2l 2()-
But the usual energy estimates for either of the weak solutions U; and U, shows that
VIIVUl 2 < CrIgliLzg) +6mviljllzg)-
Finally, uniqueness holds for (16) if
V2 =40 (gl 2@ + 67Vl 20)
ie. forv > vy =vo(llgl 2, lillL2), Cp)-
Theorem 2  Under the same assumptions as in Theorem 1 and for each v >
vo(llgll2)» I1ill 2@y Cp), consider, for each g € L*(Q) and each ¢ = 1/N, a solution u,
of the steady Navier-Stokes equations (15) with the no-slip boundary condition (8). Defining
its natural extension to Q to be ii, as in (11), one has i, — u in L>(Q) as e =1/N — 0,

where u is the unique weak solution of (16).
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3 Method of Proof
In this section, we present the strategy for the proofs of Theorems 1 and 2.
3.1 Introducing Correctors

We recall that the weak formulation of the Stokes problem (7)—(8) is
/ Vu£~Vde=/ g-Wdx, (18)

while the weak formulation of the Navier-Stokes problem (15), (8) is
v/s.z VM5~Vde:/;Z u8®u€:Vde+/;2 g-Wdx, (19)

for each test solenoidal vector field W € (HO1 (£2,))%,i.e. such that V- W = 0.
For each w € (D(2))? such that V - w = 0, we choose test vector fields of the form

We =w — B [w]
where B.[w] € (HO1 (R))? satisfies
V. B [w]=0 in and Bg[w]|g%g =wlg, .-
Similarly, we approximate the solution by
U.=u, — A
where A, € (HO1 (R))? satisfies
V-A, =0 inQand A, |BXW: V.

Explicit formulas for the fields A, and B, will be given at the end of the present section.
Notice that, by construction,

U, |3w: W, IBXk_£:0, forallk=1,..., N.
In addition, the correctors A, and B3, are chosen so that

Be[w]—0 in (Hy ()%, (20)
A, —0 in (H}(Q)). Q1)
Condition (20) implies that
W, — win (Hi(R))* and VW, — Vw in (L*(R))°.
Moreover, (20) and (21) imply that
Bi[w] — 0 in (L7(2))*,

A, — 0 in (LP(Q))%,
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The Mean-Field Limit for Solid Particles in a Navier-Stokes Flow 949

for each p €[1, 6), by the Rellich-Kondrachov compact embedding theorem, so that
W, — w in (LP(Q))> foreach pe[l,6).

Condition (21) implies that U, and i, behave similarly as ¢ — 0. In the next subsection,
we study the asymptotic behavior of U,, which is somewhat simpler to analyze. As we shall
see, condition (21) implies that

U:—U in(Hj(R)> ase—>0
for both problems (7) and (15) with the boundary condition (8). Hence
U, —-U in(LP(Q)? forl<p<6
ase — 0.

3.2 Weak Convergence of U,

Here we show that (some subsequence of) U, converges weakly in (H'(2))? (assuming
(20) and (21)), for both problems (7) and (15) with boundary condition (8).

Indeed, foreach k=1, ..., N, one has U, | Bye= 0, so that the weak formulation of the
Stokes problem becomes:

||VUS||22(Q):/Vﬁg:VUsdx—/VAS:VUde
Q Q

= f g-Usdx —/ VA, :VU.dx
Q Q
< gl 2@ lUell 2y + VA L2 IV Ul 120y
By the Poincaré inequality and (21), which entails a uniform bound of the form
IVA:l 2 < C, we conclude that | VU,||,2.q, is bounded. Hence there is a subsequence

such that U, — U in (H'(RQ))>.
For the Navier-Stokes problem we have similarly:

v||VUS||iz(Q) = v/ Vﬁg:VUgdx—v/ VA, :VU,dx
Q Q

f g-Usdx — (g - Vug) - Ugdx — v/ VA, :VU.dx
Q Q. Q

:/g~U£dx+/ UE®U5:VU€dx—v/V.A£:VUde
Q Qe Q

+ | AQU. U, A + A QA):VUdx.
Qs

Observe that

1
/US®US:VUgdx=/ Ug~((U£'V)Ug)dx=§/ V(U |U.*)dx =0

& &

@ Springer



950 L. Desvillettes et al.

by Green’s formula, since U, |y, = 0. Hence

V||VUa||iz(Q) < g2 lUell 2@y + VIVA L2 IVUe | 12
+ (A ® Us”LZ(Q) + 11U ® As||L2(Q) + ||A§2||L2(Q>)||VU5 ||L2(Q)
< g2l Uell 2g)

+ WIVAN 29 + 201 Al @ | Uell @y + T4 4 o) IV Uell 20y -
Applying inequality (17) shows that

W = 2vV2C N A L) IV Ue 20
< (Crligliag +VIVAl 2 + 1Al g))- (22)

Recall that || Al 4q) — 0 as € — 0 by (22), while [[VA| ;2 < C by (21). Hence the
estimate above entails the bound

IVUell 2y < C.
3.3 Weak Formulations on the Whole Domain

Next we recast the weak formulations (18) and (19) in terms of U,: as we shall see, this is
somewhat more convenient, at least in taking the mean field limit.
We first discuss the Stokes problem (18). Observe that

/VﬁE:VWde:/ VuE:VWdezf g - Wdx.
Q Qe

Qe
Expressing i, in terms of U,, one arrives at
/ VU, : VW.dx —I—/ VA, :VW.dx :/ g-Wdx
Q Q Q
which, after replacing W, with its expression in terms of w, leads to

/ VU, : Vwdx —/ VU, : VB.dx —I—/ VA, : VW.dx :/ g -Wdx.
Q Q Q Q

Transforming the second integral on the right hand side by Green’s formula, one eventually
obtains

/ VU, : Vwdx +/ U, - AB.dx —f AA, - Wedx = / g Wdx. (23)
Q Q Q Q
Under assumptions (20)—(21)

/ VU, : Vwdx — / VU : Vwdx, 24)
Q Q

/g-Wde—>/g~wdx (25)
Q Q

@ Springer



The Mean-Field Limit for Solid Particles in a Navier-Stokes Flow 951

as ¢ — 0. Thus we are left with computing the limit of
—/ VU, :VB.dx +/ VA, : VW.dx
Q Q

or, equivalently, of

/ U, - AB.dx —/ AA, - Wedx.
Q Q

For the Navier-Stokes problem (19), we follow the same arguments. First

v/ VuS-VWde—/ U Qug : VWedx
Qe Qe

:v/ Vﬁg-Vngx—/ﬁg®125:VW€dx:/g-W£dx (26)
Q Q Q

since v, k=1, ..., N, are constants and W, |wa = 0. Making the substitution i, = U, +.A,
in (26), one gets

v/ VU, : VW.dx + vf VA, : VW.dx
Q Q
=/ US®US:VW€dx+/g~W8dx
Q Q
+/(.A€®U8+U8 QA+ A QA : VW,dx
Q
and, inserting W, = w — B, in the equality above, one eventually arrives at
v/ VU, :Vwdx — v/ VU, :VB.dx + v/ VA, : VW.dx
Q Q Q
=/ US®US:VWde+/g~W8dx
Q Q
+/(A8®U8+US®AS+AS®A€):Vngx. (27)
Q

Next we pass to the limit as ¢ — 0; assumptions (20)—(21) imply that A, and U, converge
strongly in L*(2), so that

/(A5®U5+U5®AE+AS®A5)2Vngx—>0,
Q

/U8®US:VWde—>/U®U:dex.
Q Q

/g~W£dx—>fg-wdx,
Q Q

v/VUS:dex—M)/VU:dex,
Q Q

Moreover
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so that we are left with the task of computing the limit as ¢ — 0 of
—v/ VU, :VB.dx + v/ VA, : VW.dx.
Q Q
At this point, we need to specify how the correctors A, and B, are constructed.
3.4 Defining the Correctors

Given any smooth function w on By ; and r > s, we designate by W, ,[w] the solution of the
following Stokes problem:

A‘lls,r [w] = vns,r [w]v X € BOJ‘ \ BO.Sv

V. \Ils,r[w] = Oa
(28)
Wy [w] |BO,.v =w,
\I’ls.r [U)] |B(()..r= 0.
When s = ¢, r =r, = ¢'/3, we define
Yelw] =V, .13[w].
We denote . [w] = I, ,13[w]), the pressure field associated to ¥, [w].
With the function ¥.[w], we define the corrector B, as follows:
N
Be =Y relw(-+x)1(x — xp). (29)

k=1
Without our assumption (12), the corrector B, could not be expressed as the sum of the
contributions of each particle as in (29).
Whenever w is a constant, i.e. w(x) = v, we use the notation

D, [v] =¥, [w] andlikewise ¢.[v]=y.[w].

With the function ¢.[v], we define the corrector A, in the following manner:

N
Ae =" pelvel(x — xp). (30)

k=1

The vector fields A, and 5, so defined are obviously solenoidal elements of (HOI(SZ))3
that verify the conditions

Aclg,,=v and Biwllg =wlz .
In Sect. 5, we shall prove that A, and B, verify assumptions (21)—(20).
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4 Explicit Formulas for the Correctors

The Stokes equations in an annulus can be solved explicitly; in this section, we use these
explicit formula to express the correctors .4, and 5,, and to estimate the quantity

/ VU, :VB.dx —/ VA, : VW.dx.
Q Q

Occasionally, we will refer to the appendix (Sect. 6.2) where a few standard computations
are summarized.

We start with a formula for &, g[v]—and hence for ¢.[v]. For each x € R3, denote
r=|x|, o= ‘i—‘ Moreover, we denote P,a = (w - a)w is the orthogonal projection on the
line Rw.

Whenever 1 <r <R,

@y g[v](x) = [4o¢(R)r +2B8(R) + @ — @]U — P
- Z[a(R)r +pR + 10 4 @]pwv, an

while

@y r[v](x) =v forx € By,

@, g[v](x) =0 forx € Bf ;.

In the formulas above

3
a(R) = -2+ O(1/RY,  B(R)=— =+ O(1/R?), (32)

while
y(R):—Z—}—O(l/R), 8(R) = l—f—O(l/R) (33)

as R — +oo0.
If one replaces the boundary condition at ¥ = R with the condition at infinity

‘llim =0
the solution is
1/3 1 1/3 1
Do) =={-+=|U-Plv+|-— =) Pov. (34)
4\r 3 2\r 13

We denote by IT; o [v] the associated pressure.
The following relations hold between the pressure fields I1; g[v] and IT; [v]:

@ - VO p[v](x) — I g[v](X)w = @ VO oo [v](x) — [T} (X))@

1 1
—8a(R)r( —3Pa,)v+r—20 <E> (35)
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in the limit as R — +oo0. Finally,

3 v 3 v
(- VO oo[v](x) — T} (x)w) = _Z(l + 3Pa))r_2 - 4_1(1 - 3Pw)r_4-

Using the obvious scaling relation

Pe[v](x) = @y, pe[v](x/8),

we see that (31) and (32) become, for r € [&, ;]

g [v](x) = —[4a,(g)r2 280 + 20 2C )}(1 _ P
- 2[a1(e)r2 +Bi(e) + V‘r(g) + S‘rf)]m

=A(r)I — P,)v+ B(r)P,v
with
3 2/3 9 23 4/3
a1(8)=—§+0(8/), 51(8)=§8/ + 0",
while
n(e) = —%a +0@P),  Si(e)= %83 + 0",
Furthermore, for r € [¢, r,]
Ve[v]l = —(a(r) + b(r)o ® (I — P,)v
+bo(N[I - PIv@w+v- o —3wQw)]

with

81
a(r)y==6 (oclr + —4> ,
’

Vi 8
b(}”) :20{11’ — r_z _3}’_4

We also record the following formulas for scalar products:

Vel : Vo [w(x)] = [(@ + b)? + b (v - w(xg) — Pyvg - Pow(xr))

+ 6b2Pa)vk : wa(xk)7
and

Voelvi]l: Vw(-+x) =—@+b)w- V(v - w) +bw - (v - Vw)

+ v -wla—3b)w- (w-Vw) + by, - wV - w.

(36)

(37)

(383)

(39)

(40)

(41)

(42)

(43)

(44)

In the last formula, we have kept the term V - w, although all the vector fields w considered

in this work are solenoidal.

@ Springer



The Mean-Field Limit for Solid Particles in a Navier-Stokes Flow 955

5 Passing to the Limit

First, we prove that the correctors defined in (30) converge weakly to 0 in Hj (2) in the
vanishing ¢ limit.

5.1 Weak Convergence of A,

Observe that

4
/ GUD P Pwtsdde = S wiw) [ Gowdr (49)
e<|z|<re

ESI=re¢

for each function G for which the integral on the right-hand side makes sense. Therefore,
using (37) and (45), we obtain

4 e
||¢s[v]||2Lz(Q) = ?|v|2 (/ r(2A* + B dr + 83) (46)

where the last term comes from the integral on By_.
Since

/ r’(2A’+ BYdr < C((Oll)2(r€7 —&) +laifil(r] — &%)

+ eyl — e + (B — )+ Byl + i) — &)
+1Bivillog(re /&) + (1) (re — €)

1o (11
+énll-—— )+ (5—-3))
e 7 el 7

we obtain from (38)—(39):

Z@[vk]

N
= lelvilll}z g,

L) k=1

N
=T LSS oW e) + 0NeTP
3N k=1

O(Ne&’®) 4+ O(Ne'"?|loge|)) — 0, (47)

so that A, — 0in L%(R).
Next, we consider (43) with w(x;) = vi. Since

Véelvel : Voelv] = [(a +b)* + BN Ju* + [(a + b)* + 56°1(P,ve)?, (48)

we obtain

6n e

167 7 27
— vl (;a ) —&) =3yfe —e ) - géf(r§5—8’5)

— oy (r2 — €2) + 2408y In = — 2,8, — 8_3)>
&
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which, together with (38)—(39), gives
IV L0125, 5,y = CelURl (49)

Hence, setting r, = &'/,

N
||VA€||§2(Q)5CsZ|uk|2:C(// 3FN(x,v)|v|2dv>§C’.
k=1 Q JveRk

Therefore, there exists a subsequence such that A, — A in HOl (). Since A, — 0in L3(Q),
A =0 and the whole sequence A, — 0 in H(} (2).

5.2 Weak Convergence of B,

Next we prove that the sequence of correctors given by definition (29) converges weakly to
0in H; ().

First we estimate ||B.[w]ll;2q) and ||[VB.[w]ll;2(q)- In order to do so, we consider the
solution ¥, ,[¢] of Stokes problem (28) with w = ¢.

Using W, 5. — W, ,1/3 as test function in problem (28) with s = ¢, r = &'/

, we see that
IVWe 13l 1208y, \Bo.o) = IV We2ell 128y 50\ B o) - (50)

According to [1, Lemma 2.2.5, formula 2.2.37, p. 240], the following holds for each n €
10, 1[ and u € HI(BO,I))

IV [l 20y 156,y < C 1Vl L2050,y + 1 Nl 28,) (51)

where the constant C is uniform in 1 and u. Observe that u(x) = ¢ (2ex) satisfies

Nl 22 s,y = (28)73/2||¢||L2(B(,,26)v (52)
IVull 25, ) = )2Vl 1205 ) (53)

and
IV e 2e (D111 128,10\ 80,0 = (26) IV (]l 22080\ By, 1 20+ (54)

Using successively (54), (50), (51) and (52), (53), we see that
”v\lje,sl/3 [¢]||L2(BO_E1/3\BO_S) = (25)1/2”Vq}n,l[u]”LZ(BOYI\BOYI/Z)
< C(2e)"11Vull 2,y + (1/2)226) N1l 203, 1)
= C(IVPll12(8y00) + (1/2)22e) 1l 12054 0. ) - (55)
Assuming that ¢ is smooth and ¢ (0) = 0 implies that

IVUel@li2s, 508000 < Const.e%/2, (56)
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Since

N N
IVBwlll 2 < Y IV lwxlll2 + Y IVlw (- +x0) — wxo)]ll 2,
k=1

k=1
it follows from (49) with r, = &3 and v, = w(x;) and (56) that
IVB:[wlll;2(q) < Const.

Hence there is a subsequence s.t. B, — B in HOl ().
On the other hand

N N
D elw( 4 X010 —x0) = Y pe[w(x)1(x — x0)
k=1 k=1
N

) Yelw( +x) — wl)lx — xp).

k=1

By Poincaré’s inequality and (56),

N
D lelw (- +x0) — w@)Ix — x)112
k=1
N

< 3 Vw4 xp) — w(xol(x — x)l12, < CstNel .
k=1

Using (47) with v, = w(x;) shows that
N
Be=Y yelw(-+x)]1—0
k=1
in (L%(£2))3, so that B = 0 and the whole sequence
B: =0 in (H}(Q))’.

Finally, notice that

— 0.

N
D Welw( +x1) — w(x)]

k=1

(HJ ()
5.3 Limit of fQ VA, : VW,
‘We have

/ VA, : VW dx = / VA, :Vwdx — / VA, : VB [wldx
Q Q Q

N
= / VA, :Vwdx — / VA, : V(Zl//g[w(- +x) — w(xk)]>dx
Q Q P

N

-3 / Velvel : Ve [w () ldz. (57)
e<|z|<re

k=1
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In view of (21), we see that

lim [ VA, :Vwdx =0.
e—=0 Jo

Moreover, since

N
V(Zws[wc +x) — w(m]) >0 in (LA(®)°

k=1

we also have

N
/ VA : v(Z%[w(- +x) — w(xk)]>dx — 0.
Q

k=1

Next we estimate (57). Recalling (45), we have

f Voelvi]: Vo [w(xy)]dx =4mvy - w(xk)</ F@r)r? dr), (58)
e<|z|<re &

=r=re

where (according to (43))

_2 2, 52 2
]-'(r)—g[(a—i—b) + b°] + 2b°. 59)
Therefore,
e 32 10 1 1
[ rrear=Faier - - oot -t - Ty - - 2
¢ 3 3 re €
32 3
—Fan (rZ—e) —apdi(r;? —e) = 5¢ + 0(5).
Finally,
/ Ve[vi]: Ve [w(x)]dz = 6mevy - w(xg) + 0(e77), (60)
e<|z|<re
and
N
lim V. lvil : Ve [w(x) ldx
e k=1 Y Ee<lzl=re
N

= 1in(1)Z(6n8vk “w(x) + 0(?))
£— o

:1irr(1)(671+0(82/3))(8N)// v-w(x)Fy(x, v)dvdx
e~ Q JR3

:671/ Jx) - w(x)dx.
Q
Therefore, we conclude that

lirr(l) VA, :VW.dx = 67rf JXx) - wkx)dx. (61)
e=0 /g Q
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5.4 Limit for [, VU, : VB,

‘We have
N
/VUS:VBS[w]dx=/VUS:V(ng[w(-+xk)—w(xk)])dx
Q Q k=1
N
+> / VU (- +x1) 1 Ve [w(xi)1dz. (62)
k=1 Y e=lzl=re
Since

k=1

N
V<Zm[w(- +x) — w(xp]) —~0

in (L?(2))°, we see that

N
/ VU, : v(Zws[wo +x0) — w(xk)])dx - 0.
Q

k=1

In order to estimate (62), we first integrate by parts, denoting by n the outward unit normal
vector to the sphere 9B, ,,:

Iy =f VU (- + xi) : Vde[w(xp)]dz
e<|z|<re
= —/ U (- +x1) - Ade[w(xi)]dz
e<|z|<re
+/ (n- Vo [w(x)(- — xi)) - Uedz.
aBXk.Vg

Next we use the definition of ¢, to compute

I :/ (n - Velwx)( —x) — 7 (- — x)n) - Uedz. (63)
aB.Xk.Vg
At this point, we observe that n = o = |§:§i| (that is, w is “centered” on x; instead on the

origin as in Sect. 4). Since V¢, (x) = éVdDL,E/S (x/¢) it follows from (35) that

1 X — X X — X
I = —/ <w . vq)l,rg/s[w(xk)]( > - Hl,%( w) -U5>dx
e Jony, . s e
1 _ _
= —/ <w'w>1,oo[w<xk>](x x") - nl,oo(x xk)w
€ JByy e & e

2 3
+3 (i) (I =3P,)w(x) + O (;) ) - Usdx.

&
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By (36),
£ 3
L=— == +3P,)wxi) +3(1 —3P,)w(xg)
rS ank,rg 4
3 &2 g2
— = - 3Pw)w(xk)—2 -Ugdx + O =
4 72 r;
so that
£ 3 g2
I =— —— U +3P)wx;) +3(UI =3P)wxy) ) -Udx+0|—= ).
r2 4 r3
& BBxk,rg €

Notice that the same result is obtained in [1] by a somewhat different procedure.
At this point, we claim the following strong limits in (H~'(R?))? that hold for any G €
(Cp(R3))3—for a proof, see Sect. (6.1)) in the appendix below:

N
3 rG s, — dnp()G) in (H'®)),

i=1

N (64)
3 rGw) - wwsp,,, = Tp(0)GG) in (H™'®RY)).
i=l
Since U, — U converges weakly in (H'(R))?, we get
N
/ VU, : Vi w( + xp)]dz — —671/ wx)-Upx)dx, (65)
k=1 Y e=lzl=re Q
so that
lim [ VU, :VB.dx = —671/ wx)-Upkx)dx. (66)
e—0 Q Q

5.5 The Limit Equation
We start from the weak formulations established in Sect. 3 (that is, (18) and (19)).
5.5.1 The Stokes Case

In view of the results established in Sects. 5.3 and 5.4, we pass to the limit in the Stokes
problem (7)—(8)

/VU~dex:fg-wdx—|—6n</v-wfdxdv—/w-Updx).
Q Q
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Therefore, U is the a weak solution of
—AU—-6r(j—pU)+VIl=g,
V.-U=0, (67)

Ulye =0.

Since the problem above has at most one weak solution, the whole sequence U, converges
to U in (H'(Q))%.
In addition

N
ite =Us + Y ¢elvlx —x0) > U
k=1

in (L?(2))3, as can be seen from (47).
This finishes the proof of Theorem 1, assuming (64)—whose proof is deferred to the
appendix below

5.5.2 The Navier-Stokes Case
Likewise, for the Navier-Stokes problem (15), (8) in the limit as ¢ — 0

v/VU~dex=/U®U:dex
Q Q

+/g~wdx+67t</v-wfdxdv—/w~U,odx>.
Q

Given p, j and g, there exists vy > 0 large enough, so that, for each v > vy, the problem
U-VU—-vAUKx)—6r(j —pU)+ VIl=g,
V.U=0, (68)

Ulye =0,

has a unique weak solution U € (H, (R2))>.
Hence the whole sequence U, converges weakly to U in (HO1 Q)3 ase — 0.
As in the Stokes case, (47) implies that

N
ite =Us + Y ¢e[vdx —x0) > U

k=1

in (L2(2))3. This completes the proof of Theorem 2—assuming again that the limits in (64)
hold.
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Appendix 1
6.1 Proof of (64)

We closely follow the method described in [7] in the periodic setting. Given G € (Cj(R?))3,
we consider two auxiliary problems in U/]:I:1 By y:fork=1,...,N

{ — A& =-3G(x),
8n

oy, -, =Te G (Xk),

and

e

= &)= =G () = OG0 )0 +26(w) +3G (),
an |83xk.rg =Te (G(xk) . CU)LU

Next we extend &, and x. by O in the complement of U,ILI B, r,. Computing the Laplacian
of & and y. in the sense of distributions in the whole Euclidean space, we get

N N
—AE=-3) Glp,, + Y r:Gx)ds,

k=1 k=1

N

= —3N 1z, *(Gpy)+ Y _rG(x)bis, . (69)
k=1

- A Xe = — ZG(xk)lek.rg
k=1

N r
+ Z{ —(6(G () - @) +2G () — 3G<xk>}1gxk,s

k=1 "¢
N

+ ) r(G) - wbsp,, ,,
k=1

N

=—Nlg,, *(Gpy)+ Y _re(G(x) - )wdys, .
k=1

N r
+ Zl —(6(G(x) - @) +2G(x1)) — 3G (xz) } lp,,.- (70)
T,

k=1 1"¢

The solutions of the two auxiliary problems above are

xk|2_r

E(x)=) ————Glg,,,.

Xe(x) =

Mz i Mz

( xk|2)(G<xk> ‘w)wlp,,, |
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while their gradients are given by

N
VEW) =) Ix —xl(@® G,

k=1

Y — il
vhm=§:—714m®cm»wwmws
k=1 €

N )
+ Z(M —lx - x1<|)((G(xk) o)+ G(x) @w)lp,

P
k=1 €

with @ = 2=
[x—xg|

Then, we estimate

lI&e Hiz(Rg) < Const.rj Gszdx — O(}’?),

IVE N2 gs, < Constry | G*pydx = 0@7),

G’pndx = 0(r}),

—_— — —

Il xe ||i2(R3) =< COHSt.I’:
IWM@ngmm@/@WM=O@)

Therefore, £, and x, — 0in (H')3, so that both
A& and Ay, — 0 in (H-1)3. (71)

Next, we recall that N 1 Boy, — %”80 weakly in the sense of measures; hence

4
N, * (Gow) = -G (72)
weakly in the sense of measures. Furthermore
IN 1, . *(Gon) e < IGlL>

so that, by the Rellich compactness theorem, the limit (72) holds in the strong topology of
(H,.)*.
Going back to (69), we conclude from (71) that
N
ZI’EG(Xk)(SaBXk,m —47pG in (H,})}

k=1

strongly.
Next, we apply the same procedure to the second term on the right hand side of (70).
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First, we observe that the last term on that right hand side is bounded in L>®(R?) by
11]|G || o<, while

N
/ <¢(x) . Z{ r£(6(G(xk) - w)w +2G(xy)) — 3G(xk)} 1 Bxk_,k)dx -0  (73)
Q k=1 £

for each ¢ € (D(R?))>. Applying the Rellich compactness theorem again shows that the
convergence (73) holds in the strong topology of (H,;CI)3.
Going back to (70) and using (71), (72) and (73) shows that

N

4 . 1
> (G - @)wba,, — —-pG in (H™)
k=1

strongly.
6.2 Solution of Stokes’ Problem in an Annulus

We first prove the explicit formula for @, ; in (31), (32) and (33), by the same method as in
[12, Sect. 20]. By symmetry, we seek ®;  in the form &, z[v] = curlcurl(f (r) v) (where

r = |x|). Then
32 20 32 2 0
AL N (LA — Const.
(8r2 + r 8r> <8r2 + r Br)f(r) ons

8
fy=ar’+pr+y+3.

so that

Denoting by P, the orthogonal projection on w = x/r we arrive at formula (31):

¥

(DLR[U]()C) = _<f,/ + 7)(1_ Pw)v_szPwv

= —|:4a(R)r2 +2B(R) — ‘Sif) + @](1 — P,)v
—2|:a(R)r2 +B(R) + @ + @]Pwv.

Because of the boundary conditions, the constants «,8,y,§ in the formula above satisfy the
following system of equations:

5 3 1
3R = Da+ (R* = p = 3.
, 3
SR = Da+3(R = p =3,
3,
PR LA

Sy 35 3_
¥ TP Ty TY
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leading to the estimates (32) and (33):

9
+ Oroioo(1/RY,  B=——+ Or_1o(1/RY),

= 8R

8R3

3 1
Y :_Z+0R—>+oo(1/R)a 5:Z+0R—>+oo(1/R)-
Next we compute the pressure for the above flow; for simplicity, we first write down the
following table:
_I-0®w

Vr =w, Vo=——""—,
r

2 v— P,v
V-ow=-, w-Vo=0, Viw-v)= ——,
r r

w-P,v=w-v, V-a@a®b)=(N-a)b+a-Vb,

so that

v— P,v

VP,v= RQw+ (w-v)Vw and w-VP,v=0,

r
2 2 v—3P,v
V-Pv=-w-v, Aw=——w, AP,v=2 —— ).
r r2 r2
To find the pressure, observe that
Saa 38 3 Saa 38 3
A¢1R[v](x):—20a—r—3—r—3—ﬁ v—3 r_3+r_3+ﬁ PwU

so that, up to some unessential additive constant,

3 5 3
HI,R:_|:<2000'— — = @t 'B)w~ Pwv].

2r2 r2

Letting R — 400 in the previous expressions leads to formula (34) (see also [12]):

Sl =+ (2+ Da—rwr L (2-1)p (74)
1’oovx_4 roorl @)V 2\r 3 ol
and
3
My =550 Pov. (75)
r
Obviously

D) z[V](x) = Py oo[V](x) — [4a(R)F + 28(R)IU — P,)v

—2a(R) + B(R)IPov + -0 (i) ,
r R

- VO r[v](x) =w VO, [v](x) —4a(R)r(2I — P,)v + lZO <%> ,
r
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966 L. Desvillettes et al.

while

1 1
M g =TI 00 —20x(R)row- v+ —20 (—)
r R

as R — +o0.
Formula (35) follows as a consequence:

1 1
w -+ V¢1.R - Hl,Rw =w- Vq)hoo — H]ﬁoo(,() — Sa(R)r(I - 3Pw)l) + —20 (E) .
r
From (74) and (75), we arrive at formula (36):
3 v 3 v
- VO [v](x) =) gow=—-U+3P,)— — - —3P,)—. (76)
’ 4 r2 4 rt

Finally, we derive formulas (43), (44). First rewrite formula (40) for V¢.[v] with r €
le, r¢] in the form

Voe[v] =—a(r)N@) +b(r)[M(v) +v-w( — 3w Q@ w)] 77
where M and N are two matrix-valued, linear functions of v:

M) =U—-PH)row—w® (I — P,)v,
Nv)=w®{ — P,)v,

while

51 Y1 81
a(ry==6|oar+ — |, b(r) =2a1r — = —=3—.
r r r

For each v, w € R? and each w € S?

%M(v):M(w):N(v):N(w):—M(v):N(w):(v-w—Pwv-wa),
M) :wQ@Qw=Mw):I=N@):0oQ@w=NWw):1=0,
oQ@uw:l=0wQRQw:0vQw=1, I1:1=3.

Now (43) and (44) follow from (77) by elementary manipulations involving the identities
recalled above.
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